Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmfco GIF version

Theorem dmfco 5241
 Description: Domains of a function composition. (Contributed by NM, 27-Jan-1997.)
Assertion
Ref Expression
dmfco ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺𝐴) ∈ dom 𝐹))

Proof of Theorem dmfco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funfvex 5192 . . . . 5 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐺𝐴) ∈ V)
2 opeq1 3549 . . . . . . 7 (𝑥 = (𝐺𝐴) → ⟨𝑥, 𝑦⟩ = ⟨(𝐺𝐴), 𝑦⟩)
32eleq1d 2106 . . . . . 6 (𝑥 = (𝐺𝐴) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹))
43ceqsexgv 2673 . . . . 5 ((𝐺𝐴) ∈ V → (∃𝑥(𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹))
51, 4syl 14 . . . 4 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (∃𝑥(𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹))
6 eqcom 2042 . . . . . . 7 (𝑥 = (𝐺𝐴) ↔ (𝐺𝐴) = 𝑥)
7 funopfvb 5217 . . . . . . 7 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐺𝐴) = 𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
86, 7syl5bb 181 . . . . . 6 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝑥 = (𝐺𝐴) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
98anbi1d 438 . . . . 5 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
109exbidv 1706 . . . 4 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (∃𝑥(𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
115, 10bitr3d 179 . . 3 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1211exbidv 1706 . 2 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (∃𝑦⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
13 eldm2g 4531 . . 3 ((𝐺𝐴) ∈ V → ((𝐺𝐴) ∈ dom 𝐹 ↔ ∃𝑦⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹))
141, 13syl 14 . 2 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐺𝐴) ∈ dom 𝐹 ↔ ∃𝑦⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹))
15 eldm2g 4531 . . . 4 (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝐴, 𝑦⟩ ∈ (𝐹𝐺)))
16 vex 2560 . . . . . 6 𝑦 ∈ V
17 opelco2g 4503 . . . . . 6 ((𝐴 ∈ dom 𝐺𝑦 ∈ V) → (⟨𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1816, 17mpan2 401 . . . . 5 (𝐴 ∈ dom 𝐺 → (⟨𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1918exbidv 1706 . . . 4 (𝐴 ∈ dom 𝐺 → (∃𝑦𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2015, 19bitrd 177 . . 3 (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2120adantl 262 . 2 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2212, 14, 213bitr4rd 210 1 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺𝐴) ∈ dom 𝐹))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   = wceq 1243  ∃wex 1381   ∈ wcel 1393  Vcvv 2557  ⟨cop 3378  dom cdm 4345   ∘ ccom 4349  Fun wfun 4896  ‘cfv 4902 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator