Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbabg Structured version   Unicode version

Theorem csbabg 2901
 Description: Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
csbabg
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   ()   (,)

Proof of Theorem csbabg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sbccom 2827 . . . 4
2 df-clab 2024 . . . . 5
3 sbsbc 2762 . . . . 5
42, 3bitri 173 . . . 4
5 df-clab 2024 . . . . . 6
6 sbsbc 2762 . . . . . 6
75, 6bitri 173 . . . . 5
87sbcbii 2812 . . . 4
91, 4, 83bitr4i 201 . . 3
10 sbcel2g 2865 . . 3
119, 10syl5rbb 182 . 2
1211eqrdv 2035 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1242   wcel 1390  wsb 1642  cab 2023  wsbc 2758  csb 2846 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-sbc 2759  df-csb 2847 This theorem is referenced by:  csbsng  3422  csbunig  3579  csbxpg  4364  csbdmg  4472  csbrng  4725
 Copyright terms: Public domain W3C validator