Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbccom | Unicode version |
Description: Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
Ref | Expression |
---|---|
sbccom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbccomlem 2832 | . . . 4 | |
2 | sbccomlem 2832 | . . . . . . 7 | |
3 | 2 | sbcbii 2818 | . . . . . 6 |
4 | sbccomlem 2832 | . . . . . 6 | |
5 | 3, 4 | bitri 173 | . . . . 5 |
6 | 5 | sbcbii 2818 | . . . 4 |
7 | sbccomlem 2832 | . . . . 5 | |
8 | 7 | sbcbii 2818 | . . . 4 |
9 | 1, 6, 8 | 3bitr3i 199 | . . 3 |
10 | sbcco 2785 | . . 3 | |
11 | sbcco 2785 | . . 3 | |
12 | 9, 10, 11 | 3bitr3i 199 | . 2 |
13 | sbcco 2785 | . . 3 | |
14 | 13 | sbcbii 2818 | . 2 |
15 | sbcco 2785 | . . 3 | |
16 | 15 | sbcbii 2818 | . 2 |
17 | 12, 14, 16 | 3bitr3i 199 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 98 wsbc 2764 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-sbc 2765 |
This theorem is referenced by: csbcomg 2873 csbabg 2907 mpt2xopovel 5856 |
Copyright terms: Public domain | W3C validator |