ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbccomlem Unicode version

Theorem sbccomlem 2832
Description: Lemma for sbccom 2833. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.)
Assertion
Ref Expression
sbccomlem  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. B  / 
y ]. [. A  /  x ]. ph )
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem sbccomlem
StepHypRef Expression
1 excom 1554 . . . 4  |-  ( E. x E. y ( x  =  A  /\  ( y  =  B  /\  ph ) )  <->  E. y E. x ( x  =  A  /\  ( y  =  B  /\  ph ) ) )
2 exdistr 1787 . . . 4  |-  ( E. x E. y ( x  =  A  /\  ( y  =  B  /\  ph ) )  <->  E. x ( x  =  A  /\  E. y
( y  =  B  /\  ph ) ) )
3 an12 495 . . . . . . 7  |-  ( ( x  =  A  /\  ( y  =  B  /\  ph ) )  <-> 
( y  =  B  /\  ( x  =  A  /\  ph )
) )
43exbii 1496 . . . . . 6  |-  ( E. x ( x  =  A  /\  ( y  =  B  /\  ph ) )  <->  E. x
( y  =  B  /\  ( x  =  A  /\  ph )
) )
5 19.42v 1786 . . . . . 6  |-  ( E. x ( y  =  B  /\  ( x  =  A  /\  ph ) )  <->  ( y  =  B  /\  E. x
( x  =  A  /\  ph ) ) )
64, 5bitri 173 . . . . 5  |-  ( E. x ( x  =  A  /\  ( y  =  B  /\  ph ) )  <->  ( y  =  B  /\  E. x
( x  =  A  /\  ph ) ) )
76exbii 1496 . . . 4  |-  ( E. y E. x ( x  =  A  /\  ( y  =  B  /\  ph ) )  <->  E. y ( y  =  B  /\  E. x
( x  =  A  /\  ph ) ) )
81, 2, 73bitr3i 199 . . 3  |-  ( E. x ( x  =  A  /\  E. y
( y  =  B  /\  ph ) )  <->  E. y ( y  =  B  /\  E. x
( x  =  A  /\  ph ) ) )
9 sbc5 2787 . . 3  |-  ( [. A  /  x ]. E. y ( y  =  B  /\  ph )  <->  E. x ( x  =  A  /\  E. y
( y  =  B  /\  ph ) ) )
10 sbc5 2787 . . 3  |-  ( [. B  /  y ]. E. x ( x  =  A  /\  ph )  <->  E. y ( y  =  B  /\  E. x
( x  =  A  /\  ph ) ) )
118, 9, 103bitr4i 201 . 2  |-  ( [. A  /  x ]. E. y ( y  =  B  /\  ph )  <->  [. B  /  y ]. E. x ( x  =  A  /\  ph )
)
12 sbc5 2787 . . 3  |-  ( [. B  /  y ]. ph  <->  E. y
( y  =  B  /\  ph ) )
1312sbcbii 2818 . 2  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. A  /  x ]. E. y ( y  =  B  /\  ph ) )
14 sbc5 2787 . . 3  |-  ( [. A  /  x ]. ph  <->  E. x
( x  =  A  /\  ph ) )
1514sbcbii 2818 . 2  |-  ( [. B  /  y ]. [. A  /  x ]. ph  <->  [. B  / 
y ]. E. x ( x  =  A  /\  ph ) )
1611, 13, 153bitr4i 201 1  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. B  / 
y ]. [. A  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381   [.wsbc 2764
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sbc 2765
This theorem is referenced by:  sbccom  2833
  Copyright terms: Public domain W3C validator