Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbnfc2 | Unicode version |
Description: Two ways of expressing " is (effectively) not free in ." (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
sbnfc2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2560 | . . . . 5 | |
2 | csbtt 2862 | . . . . 5 | |
3 | 1, 2 | mpan 400 | . . . 4 |
4 | vex 2560 | . . . . 5 | |
5 | csbtt 2862 | . . . . 5 | |
6 | 4, 5 | mpan 400 | . . . 4 |
7 | 3, 6 | eqtr4d 2075 | . . 3 |
8 | 7 | alrimivv 1755 | . 2 |
9 | nfv 1421 | . . 3 | |
10 | eleq2 2101 | . . . . . 6 | |
11 | sbsbc 2768 | . . . . . . 7 | |
12 | sbcel2g 2871 | . . . . . . . 8 | |
13 | 1, 12 | ax-mp 7 | . . . . . . 7 |
14 | 11, 13 | bitri 173 | . . . . . 6 |
15 | sbsbc 2768 | . . . . . . 7 | |
16 | sbcel2g 2871 | . . . . . . . 8 | |
17 | 4, 16 | ax-mp 7 | . . . . . . 7 |
18 | 15, 17 | bitri 173 | . . . . . 6 |
19 | 10, 14, 18 | 3bitr4g 212 | . . . . 5 |
20 | 19 | 2alimi 1345 | . . . 4 |
21 | sbnf2 1857 | . . . 4 | |
22 | 20, 21 | sylibr 137 | . . 3 |
23 | 9, 22 | nfcd 2173 | . 2 |
24 | 8, 23 | impbii 117 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 98 wal 1241 wceq 1243 wnf 1349 wcel 1393 wsb 1645 wnfc 2165 cvv 2557 wsbc 2764 csb 2852 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-sbc 2765 df-csb 2853 |
This theorem is referenced by: eusvnf 4185 |
Copyright terms: Public domain | W3C validator |