ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbnfc2 Unicode version

Theorem sbnfc2 2906
Description: Two ways of expressing " x is (effectively) not free in  A." (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
sbnfc2  |-  ( F/_ x A  <->  A. y A. z [_ y  /  x ]_ A  =  [_ z  /  x ]_ A )
Distinct variable groups:    x, y, z   
y, A, z
Allowed substitution hint:    A( x)

Proof of Theorem sbnfc2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 vex 2560 . . . . 5  |-  y  e. 
_V
2 csbtt 2862 . . . . 5  |-  ( ( y  e.  _V  /\  F/_ x A )  ->  [_ y  /  x ]_ A  =  A
)
31, 2mpan 400 . . . 4  |-  ( F/_ x A  ->  [_ y  /  x ]_ A  =  A )
4 vex 2560 . . . . 5  |-  z  e. 
_V
5 csbtt 2862 . . . . 5  |-  ( ( z  e.  _V  /\  F/_ x A )  ->  [_ z  /  x ]_ A  =  A
)
64, 5mpan 400 . . . 4  |-  ( F/_ x A  ->  [_ z  /  x ]_ A  =  A )
73, 6eqtr4d 2075 . . 3  |-  ( F/_ x A  ->  [_ y  /  x ]_ A  = 
[_ z  /  x ]_ A )
87alrimivv 1755 . 2  |-  ( F/_ x A  ->  A. y A. z [_ y  /  x ]_ A  =  [_ z  /  x ]_ A
)
9 nfv 1421 . . 3  |-  F/ w A. y A. z [_ y  /  x ]_ A  =  [_ z  /  x ]_ A
10 eleq2 2101 . . . . . 6  |-  ( [_ y  /  x ]_ A  =  [_ z  /  x ]_ A  ->  ( w  e.  [_ y  /  x ]_ A  <->  w  e.  [_ z  /  x ]_ A ) )
11 sbsbc 2768 . . . . . . 7  |-  ( [ y  /  x ]
w  e.  A  <->  [. y  /  x ]. w  e.  A
)
12 sbcel2g 2871 . . . . . . . 8  |-  ( y  e.  _V  ->  ( [. y  /  x ]. w  e.  A  <->  w  e.  [_ y  /  x ]_ A ) )
131, 12ax-mp 7 . . . . . . 7  |-  ( [. y  /  x ]. w  e.  A  <->  w  e.  [_ y  /  x ]_ A )
1411, 13bitri 173 . . . . . 6  |-  ( [ y  /  x ]
w  e.  A  <->  w  e.  [_ y  /  x ]_ A )
15 sbsbc 2768 . . . . . . 7  |-  ( [ z  /  x ]
w  e.  A  <->  [. z  /  x ]. w  e.  A
)
16 sbcel2g 2871 . . . . . . . 8  |-  ( z  e.  _V  ->  ( [. z  /  x ]. w  e.  A  <->  w  e.  [_ z  /  x ]_ A ) )
174, 16ax-mp 7 . . . . . . 7  |-  ( [. z  /  x ]. w  e.  A  <->  w  e.  [_ z  /  x ]_ A )
1815, 17bitri 173 . . . . . 6  |-  ( [ z  /  x ]
w  e.  A  <->  w  e.  [_ z  /  x ]_ A )
1910, 14, 183bitr4g 212 . . . . 5  |-  ( [_ y  /  x ]_ A  =  [_ z  /  x ]_ A  ->  ( [ y  /  x ]
w  e.  A  <->  [ z  /  x ] w  e.  A ) )
20192alimi 1345 . . . 4  |-  ( A. y A. z [_ y  /  x ]_ A  = 
[_ z  /  x ]_ A  ->  A. y A. z ( [ y  /  x ] w  e.  A  <->  [ z  /  x ] w  e.  A
) )
21 sbnf2 1857 . . . 4  |-  ( F/ x  w  e.  A  <->  A. y A. z ( [ y  /  x ] w  e.  A  <->  [ z  /  x ]
w  e.  A ) )
2220, 21sylibr 137 . . 3  |-  ( A. y A. z [_ y  /  x ]_ A  = 
[_ z  /  x ]_ A  ->  F/ x  w  e.  A )
239, 22nfcd 2173 . 2  |-  ( A. y A. z [_ y  /  x ]_ A  = 
[_ z  /  x ]_ A  ->  F/_ x A )
248, 23impbii 117 1  |-  ( F/_ x A  <->  A. y A. z [_ y  /  x ]_ A  =  [_ z  /  x ]_ A )
Colors of variables: wff set class
Syntax hints:    <-> wb 98   A.wal 1241    = wceq 1243   F/wnf 1349    e. wcel 1393   [wsb 1645   F/_wnfc 2165   _Vcvv 2557   [.wsbc 2764   [_csb 2852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sbc 2765  df-csb 2853
This theorem is referenced by:  eusvnf  4185
  Copyright terms: Public domain W3C validator