Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbrng Structured version   Unicode version

Theorem csbrng 4725
 Description: Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbrng

Proof of Theorem csbrng
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 2901 . . 3
2 sbcexg 2807 . . . . 5
3 sbcel2g 2865 . . . . . 6
43exbidv 1703 . . . . 5
52, 4bitrd 177 . . . 4
65abbidv 2152 . . 3
71, 6eqtrd 2069 . 2
8 dfrn3 4467 . . 3
98csbeq2i 2870 . 2
10 dfrn3 4467 . 2
117, 9, 103eqtr4g 2094 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1242  wex 1378   wcel 1390  cab 2023  wsbc 2758  csb 2846  cop 3370   crn 4289 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935 This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-sbc 2759  df-csb 2847  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-cnv 4296  df-dm 4298  df-rn 4299 This theorem is referenced by:  sbcfg  4988
 Copyright terms: Public domain W3C validator