ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnegexlem3 Unicode version

Theorem cnegexlem3 7188
Description: Existence of real number difference. Lemma for cnegex 7189. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
cnegexlem3  |-  ( ( b  e.  RR  /\  y  e.  RR )  ->  E. c  e.  RR  ( b  +  c )  =  y )
Distinct variable group:    b, c, y

Proof of Theorem cnegexlem3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 readdcl 7007 . . . . . 6  |-  ( ( b  e.  RR  /\  x  e.  RR )  ->  ( b  +  x
)  e.  RR )
2 ax-rnegex 6993 . . . . . 6  |-  ( ( b  +  x )  e.  RR  ->  E. c  e.  RR  ( ( b  +  x )  +  c )  =  0 )
31, 2syl 14 . . . . 5  |-  ( ( b  e.  RR  /\  x  e.  RR )  ->  E. c  e.  RR  ( ( b  +  x )  +  c )  =  0 )
43adantlr 446 . . . 4  |-  ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  ->  E. c  e.  RR  ( ( b  +  x )  +  c )  =  0 )
54adantr 261 . . 3  |-  ( ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  ->  E. c  e.  RR  ( ( b  +  x )  +  c )  =  0 )
6 recn 7014 . . . . . . . 8  |-  ( b  e.  RR  ->  b  e.  CC )
7 recn 7014 . . . . . . . 8  |-  ( y  e.  RR  ->  y  e.  CC )
86, 7anim12i 321 . . . . . . 7  |-  ( ( b  e.  RR  /\  y  e.  RR )  ->  ( b  e.  CC  /\  y  e.  CC ) )
98anim1i 323 . . . . . 6  |-  ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  ->  ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR ) )
109anim1i 323 . . . . 5  |-  ( ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  -> 
( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 ) )
11 recn 7014 . . . . 5  |-  ( c  e.  RR  ->  c  e.  CC )
12 recn 7014 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  e.  CC )
13 add32 7170 . . . . . . . . . . . 12  |-  ( ( b  e.  CC  /\  x  e.  CC  /\  c  e.  CC )  ->  (
( b  +  x
)  +  c )  =  ( ( b  +  c )  +  x ) )
14133expa 1104 . . . . . . . . . . 11  |-  ( ( ( b  e.  CC  /\  x  e.  CC )  /\  c  e.  CC )  ->  ( ( b  +  x )  +  c )  =  ( ( b  +  c )  +  x ) )
15 addcl 7006 . . . . . . . . . . . . 13  |-  ( ( b  e.  CC  /\  c  e.  CC )  ->  ( b  +  c )  e.  CC )
16 addcom 7150 . . . . . . . . . . . . 13  |-  ( ( ( b  +  c )  e.  CC  /\  x  e.  CC )  ->  ( ( b  +  c )  +  x
)  =  ( x  +  ( b  +  c ) ) )
1715, 16sylan 267 . . . . . . . . . . . 12  |-  ( ( ( b  e.  CC  /\  c  e.  CC )  /\  x  e.  CC )  ->  ( ( b  +  c )  +  x )  =  ( x  +  ( b  +  c ) ) )
1817an32s 502 . . . . . . . . . . 11  |-  ( ( ( b  e.  CC  /\  x  e.  CC )  /\  c  e.  CC )  ->  ( ( b  +  c )  +  x )  =  ( x  +  ( b  +  c ) ) )
1914, 18eqtr2d 2073 . . . . . . . . . 10  |-  ( ( ( b  e.  CC  /\  x  e.  CC )  /\  c  e.  CC )  ->  ( x  +  ( b  +  c ) )  =  ( ( b  +  x
)  +  c ) )
2012, 19sylanl2 383 . . . . . . . . 9  |-  ( ( ( b  e.  CC  /\  x  e.  RR )  /\  c  e.  CC )  ->  ( x  +  ( b  +  c ) )  =  ( ( b  +  x
)  +  c ) )
2120adantllr 450 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  c  e.  CC )  ->  (
x  +  ( b  +  c ) )  =  ( ( b  +  x )  +  c ) )
2221adantlr 446 . . . . . . 7  |-  ( ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  CC )  ->  ( x  +  ( b  +  c ) )  =  ( ( b  +  x )  +  c ) )
23 addcom 7150 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  =  ( y  +  x ) )
2423ancoms 255 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( x  +  y )  =  ( y  +  x ) )
2512, 24sylan2 270 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  x  e.  RR )  ->  ( x  +  y )  =  ( y  +  x ) )
26 id 19 . . . . . . . . . 10  |-  ( ( y  +  x )  =  0  ->  (
y  +  x )  =  0 )
2725, 26sylan9eq 2092 . . . . . . . . 9  |-  ( ( ( y  e.  CC  /\  x  e.  RR )  /\  ( y  +  x )  =  0 )  ->  ( x  +  y )  =  0 )
2827adantlll 449 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  -> 
( x  +  y )  =  0 )
2928adantr 261 . . . . . . 7  |-  ( ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  CC )  ->  ( x  +  y )  =  0 )
3022, 29eqeq12d 2054 . . . . . 6  |-  ( ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  CC )  ->  ( ( x  +  ( b  +  c ) )  =  ( x  +  y )  <-> 
( ( b  +  x )  +  c )  =  0 ) )
31 simplr 482 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  c  e.  CC )  ->  x  e.  RR )
3215adantlr 446 . . . . . . . . 9  |-  ( ( ( b  e.  CC  /\  y  e.  CC )  /\  c  e.  CC )  ->  ( b  +  c )  e.  CC )
3332adantlr 446 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  c  e.  CC )  ->  (
b  +  c )  e.  CC )
34 simpllr 486 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  c  e.  CC )  ->  y  e.  CC )
35 cnegexlem1 7186 . . . . . . . 8  |-  ( ( x  e.  RR  /\  ( b  +  c )  e.  CC  /\  y  e.  CC )  ->  ( ( x  +  ( b  +  c ) )  =  ( x  +  y )  <-> 
( b  +  c )  =  y ) )
3631, 33, 34, 35syl3anc 1135 . . . . . . 7  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  c  e.  CC )  ->  (
( x  +  ( b  +  c ) )  =  ( x  +  y )  <->  ( b  +  c )  =  y ) )
3736adantlr 446 . . . . . 6  |-  ( ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  CC )  ->  ( ( x  +  ( b  +  c ) )  =  ( x  +  y )  <-> 
( b  +  c )  =  y ) )
3830, 37bitr3d 179 . . . . 5  |-  ( ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  CC )  ->  ( ( ( b  +  x )  +  c )  =  0  <-> 
( b  +  c )  =  y ) )
3910, 11, 38syl2an 273 . . . 4  |-  ( ( ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  RR )  ->  ( ( ( b  +  x )  +  c )  =  0  <-> 
( b  +  c )  =  y ) )
4039rexbidva 2323 . . 3  |-  ( ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  -> 
( E. c  e.  RR  ( ( b  +  x )  +  c )  =  0  <->  E. c  e.  RR  ( b  +  c )  =  y ) )
415, 40mpbid 135 . 2  |-  ( ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  ->  E. c  e.  RR  ( b  +  c )  =  y )
42 ax-rnegex 6993 . . 3  |-  ( y  e.  RR  ->  E. x  e.  RR  ( y  +  x )  =  0 )
4342adantl 262 . 2  |-  ( ( b  e.  RR  /\  y  e.  RR )  ->  E. x  e.  RR  ( y  +  x
)  =  0 )
4441, 43r19.29a 2454 1  |-  ( ( b  e.  RR  /\  y  e.  RR )  ->  E. c  e.  RR  ( b  +  c )  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   E.wrex 2307  (class class class)co 5512   CCcc 6887   RRcr 6888   0cc0 6889    + caddc 6892
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-resscn 6976  ax-1cn 6977  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515
This theorem is referenced by:  cnegex  7189
  Copyright terms: Public domain W3C validator