ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnegexlem2 Unicode version

Theorem cnegexlem2 7187
Description: Existence of a real number which produces a real number when multiplied by  _i. (Hint: zero is such a number, although we don't need to prove that yet). Lemma for cnegex 7189. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
cnegexlem2  |-  E. y  e.  RR  ( _i  x.  y )  e.  RR

Proof of Theorem cnegexlem2
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 7019 . 2  |-  0  e.  CC
2 cnre 7023 . 2  |-  ( 0  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  0  =  ( x  +  ( _i  x.  y ) ) )
3 ax-rnegex 6993 . . . . . 6  |-  ( x  e.  RR  ->  E. z  e.  RR  ( x  +  z )  =  0 )
43adantr 261 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  E. z  e.  RR  ( x  +  z
)  =  0 )
5 recn 7014 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  x  e.  CC )
6 ax-icn 6979 . . . . . . . . . . . 12  |-  _i  e.  CC
7 recn 7014 . . . . . . . . . . . 12  |-  ( y  e.  RR  ->  y  e.  CC )
8 mulcl 7008 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  y  e.  CC )  ->  ( _i  x.  y
)  e.  CC )
96, 7, 8sylancr 393 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  (
_i  x.  y )  e.  CC )
10 recn 7014 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  z  e.  CC )
11 addid2 7152 . . . . . . . . . . . . . . 15  |-  ( z  e.  CC  ->  (
0  +  z )  =  z )
12113ad2ant3 927 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  ->  ( 0  +  z )  =  z )
1312adantr 261 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  (
0  +  z )  =  z )
14 oveq1 5519 . . . . . . . . . . . . . . 15  |-  ( ( x  +  z )  =  0  ->  (
( x  +  z )  +  ( _i  x.  y ) )  =  ( 0  +  ( _i  x.  y
) ) )
1514ad2antrl 459 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  (
( x  +  z )  +  ( _i  x.  y ) )  =  ( 0  +  ( _i  x.  y
) ) )
16 add32 7170 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  z  e.  CC  /\  (
_i  x.  y )  e.  CC )  ->  (
( x  +  z )  +  ( _i  x.  y ) )  =  ( ( x  +  ( _i  x.  y ) )  +  z ) )
17163com23 1110 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  ->  ( ( x  +  z )  +  ( _i  x.  y ) )  =  ( ( x  +  ( _i  x.  y ) )  +  z ) )
18 oveq1 5519 . . . . . . . . . . . . . . . . 17  |-  ( 0  =  ( x  +  ( _i  x.  y
) )  ->  (
0  +  z )  =  ( ( x  +  ( _i  x.  y ) )  +  z ) )
1918eqcomd 2045 . . . . . . . . . . . . . . . 16  |-  ( 0  =  ( x  +  ( _i  x.  y
) )  ->  (
( x  +  ( _i  x.  y ) )  +  z )  =  ( 0  +  z ) )
2017, 19sylan9eq 2092 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  0  =  (
x  +  ( _i  x.  y ) ) )  ->  ( (
x  +  z )  +  ( _i  x.  y ) )  =  ( 0  +  z ) )
2120adantrl 447 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  (
( x  +  z )  +  ( _i  x.  y ) )  =  ( 0  +  z ) )
22 addid2 7152 . . . . . . . . . . . . . . . 16  |-  ( ( _i  x.  y )  e.  CC  ->  (
0  +  ( _i  x.  y ) )  =  ( _i  x.  y ) )
23223ad2ant2 926 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  ->  ( 0  +  ( _i  x.  y ) )  =  ( _i  x.  y ) )
2423adantr 261 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  (
0  +  ( _i  x.  y ) )  =  ( _i  x.  y ) )
2515, 21, 243eqtr3d 2080 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  (
0  +  z )  =  ( _i  x.  y ) )
2613, 25eqtr3d 2074 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  z  =  ( _i  x.  y ) )
2726ex 108 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  ->  ( ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) )  ->  z  =  ( _i  x.  y ) ) )
285, 9, 10, 27syl3an 1177 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  z  e.  RR )  ->  (
( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) )  ->  z  =  ( _i  x.  y
) ) )
29283expa 1104 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  e.  RR )  ->  ( ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y
) ) )  -> 
z  =  ( _i  x.  y ) ) )
3029imp 115 . . . . . . . 8  |-  ( ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  e.  RR )  /\  (
( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  z  =  ( _i  x.  y
) )
31 simplr 482 . . . . . . . 8  |-  ( ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  e.  RR )  /\  (
( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  z  e.  RR )
3230, 31eqeltrrd 2115 . . . . . . 7  |-  ( ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  e.  RR )  /\  (
( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  ( _i  x.  y )  e.  RR )
3332exp32 347 . . . . . 6  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  e.  RR )  ->  ( ( x  +  z )  =  0  ->  ( 0  =  ( x  +  ( _i  x.  y
) )  ->  (
_i  x.  y )  e.  RR ) ) )
3433rexlimdva 2433 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( E. z  e.  RR  ( x  +  z )  =  0  ->  ( 0  =  ( x  +  ( _i  x.  y ) )  ->  ( _i  x.  y )  e.  RR ) ) )
354, 34mpd 13 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( 0  =  ( x  +  ( _i  x.  y ) )  ->  ( _i  x.  y )  e.  RR ) )
3635reximdva 2421 . . 3  |-  ( x  e.  RR  ->  ( E. y  e.  RR  0  =  ( x  +  ( _i  x.  y ) )  ->  E. y  e.  RR  ( _i  x.  y
)  e.  RR ) )
3736rexlimiv 2427 . 2  |-  ( E. x  e.  RR  E. y  e.  RR  0  =  ( x  +  ( _i  x.  y
) )  ->  E. y  e.  RR  ( _i  x.  y )  e.  RR )
381, 2, 37mp2b 8 1  |-  E. y  e.  RR  ( _i  x.  y )  e.  RR
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885    = wceq 1243    e. wcel 1393   E.wrex 2307  (class class class)co 5512   CCcc 6887   RRcr 6888   0cc0 6889   _ici 6891    + caddc 6892    x. cmul 6894
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-resscn 6976  ax-1cn 6977  ax-icn 6979  ax-addcl 6980  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515
This theorem is referenced by:  cnegex  7189
  Copyright terms: Public domain W3C validator