ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sess2 GIF version

Theorem sess2 4060
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
sess2 (AB → (𝑅 Se B𝑅 Se A))

Proof of Theorem sess2
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 2998 . . 3 (AB → (x B {y By𝑅x} V → x A {y By𝑅x} V))
2 rabss2 3017 . . . . 5 (AB → {y Ay𝑅x} ⊆ {y By𝑅x})
3 ssexg 3887 . . . . . 6 (({y Ay𝑅x} ⊆ {y By𝑅x} {y By𝑅x} V) → {y Ay𝑅x} V)
43ex 108 . . . . 5 ({y Ay𝑅x} ⊆ {y By𝑅x} → ({y By𝑅x} V → {y Ay𝑅x} V))
52, 4syl 14 . . . 4 (AB → ({y By𝑅x} V → {y Ay𝑅x} V))
65ralimdv 2382 . . 3 (AB → (x A {y By𝑅x} V → x A {y Ay𝑅x} V))
71, 6syld 40 . 2 (AB → (x B {y By𝑅x} V → x A {y Ay𝑅x} V))
8 df-se 4056 . 2 (𝑅 Se Bx B {y By𝑅x} V)
9 df-se 4056 . 2 (𝑅 Se Ax A {y Ay𝑅x} V)
107, 8, 93imtr4g 194 1 (AB → (𝑅 Se B𝑅 Se A))
Colors of variables: wff set class
Syntax hints:  wi 4   wcel 1390  wral 2300  {crab 2304  Vcvv 2551  wss 2911   class class class wbr 3755   Se wse 4055
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rab 2309  df-v 2553  df-in 2918  df-ss 2925  df-se 4056
This theorem is referenced by:  seeq2  4062
  Copyright terms: Public domain W3C validator