![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sess2 | GIF version |
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
sess2 | ⊢ (A ⊆ B → (𝑅 Se B → 𝑅 Se A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv 2998 | . . 3 ⊢ (A ⊆ B → (∀x ∈ B {y ∈ B ∣ y𝑅x} ∈ V → ∀x ∈ A {y ∈ B ∣ y𝑅x} ∈ V)) | |
2 | rabss2 3017 | . . . . 5 ⊢ (A ⊆ B → {y ∈ A ∣ y𝑅x} ⊆ {y ∈ B ∣ y𝑅x}) | |
3 | ssexg 3887 | . . . . . 6 ⊢ (({y ∈ A ∣ y𝑅x} ⊆ {y ∈ B ∣ y𝑅x} ∧ {y ∈ B ∣ y𝑅x} ∈ V) → {y ∈ A ∣ y𝑅x} ∈ V) | |
4 | 3 | ex 108 | . . . . 5 ⊢ ({y ∈ A ∣ y𝑅x} ⊆ {y ∈ B ∣ y𝑅x} → ({y ∈ B ∣ y𝑅x} ∈ V → {y ∈ A ∣ y𝑅x} ∈ V)) |
5 | 2, 4 | syl 14 | . . . 4 ⊢ (A ⊆ B → ({y ∈ B ∣ y𝑅x} ∈ V → {y ∈ A ∣ y𝑅x} ∈ V)) |
6 | 5 | ralimdv 2382 | . . 3 ⊢ (A ⊆ B → (∀x ∈ A {y ∈ B ∣ y𝑅x} ∈ V → ∀x ∈ A {y ∈ A ∣ y𝑅x} ∈ V)) |
7 | 1, 6 | syld 40 | . 2 ⊢ (A ⊆ B → (∀x ∈ B {y ∈ B ∣ y𝑅x} ∈ V → ∀x ∈ A {y ∈ A ∣ y𝑅x} ∈ V)) |
8 | df-se 4056 | . 2 ⊢ (𝑅 Se B ↔ ∀x ∈ B {y ∈ B ∣ y𝑅x} ∈ V) | |
9 | df-se 4056 | . 2 ⊢ (𝑅 Se A ↔ ∀x ∈ A {y ∈ A ∣ y𝑅x} ∈ V) | |
10 | 7, 8, 9 | 3imtr4g 194 | 1 ⊢ (A ⊆ B → (𝑅 Se B → 𝑅 Se A)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1390 ∀wral 2300 {crab 2304 Vcvv 2551 ⊆ wss 2911 class class class wbr 3755 Se wse 4055 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 |
This theorem depends on definitions: df-bi 110 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ral 2305 df-rab 2309 df-v 2553 df-in 2918 df-ss 2925 df-se 4056 |
This theorem is referenced by: seeq2 4062 |
Copyright terms: Public domain | W3C validator |