Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seeq1 | GIF version |
Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
seeq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 2998 | . . 3 ⊢ (𝑅 = 𝑆 → 𝑆 ⊆ 𝑅) | |
2 | sess1 4074 | . . 3 ⊢ (𝑆 ⊆ 𝑅 → (𝑅 Se 𝐴 → 𝑆 Se 𝐴)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝑅 = 𝑆 → (𝑅 Se 𝐴 → 𝑆 Se 𝐴)) |
4 | eqimss 2997 | . . 3 ⊢ (𝑅 = 𝑆 → 𝑅 ⊆ 𝑆) | |
5 | sess1 4074 | . . 3 ⊢ (𝑅 ⊆ 𝑆 → (𝑆 Se 𝐴 → 𝑅 Se 𝐴)) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝑅 = 𝑆 → (𝑆 Se 𝐴 → 𝑅 Se 𝐴)) |
7 | 3, 6 | impbid 120 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 = wceq 1243 ⊆ wss 2917 Se wse 4066 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rab 2315 df-v 2559 df-in 2924 df-ss 2931 df-br 3765 df-se 4070 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |