Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relsn2m | GIF version |
Description: A singleton is a relation iff it has an inhabited domain. (Contributed by Jim Kingdon, 16-Dec-2018.) |
Ref | Expression |
---|---|
relsn2m.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
relsn2m | ⊢ (Rel {𝐴} ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsn2m.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | relsn 4443 | . 2 ⊢ (Rel {𝐴} ↔ 𝐴 ∈ (V × V)) |
3 | dmsnm 4786 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) | |
4 | 2, 3 | bitri 173 | 1 ⊢ (Rel {𝐴} ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 ∃wex 1381 ∈ wcel 1393 Vcvv 2557 {csn 3375 × cxp 4343 dom cdm 4345 Rel wrel 4350 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-rel 4352 df-dm 4355 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |