ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsn2m GIF version

Theorem relsn2m 4791
Description: A singleton is a relation iff it has an inhabited domain. (Contributed by Jim Kingdon, 16-Dec-2018.)
Hypothesis
Ref Expression
relsn2m.1 𝐴 ∈ V
Assertion
Ref Expression
relsn2m (Rel {𝐴} ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem relsn2m
StepHypRef Expression
1 relsn2m.1 . . 3 𝐴 ∈ V
21relsn 4443 . 2 (Rel {𝐴} ↔ 𝐴 ∈ (V × V))
3 dmsnm 4786 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
42, 3bitri 173 1 (Rel {𝐴} ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
Colors of variables: wff set class
Syntax hints:  wb 98  wex 1381  wcel 1393  Vcvv 2557  {csn 3375   × cxp 4343  dom cdm 4345  Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-dm 4355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator