ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano3 Structured version   GIF version

Theorem peano3 4215
Description: The successor of any natural number is not zero. One of Peano's 5 postulates for arithmetic. Proposition 7.30(3) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano3 (A 𝜔 → suc A ≠ ∅)

Proof of Theorem peano3
StepHypRef Expression
1 nsuceq0g 4077 1 (A 𝜔 → suc A ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   wcel 1375  wne 2186  c0 3202  suc csuc 4026  𝜔com 4209
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-io 617  ax-5 1315  ax-7 1316  ax-gen 1317  ax-ie1 1362  ax-ie2 1363  ax-8 1377  ax-10 1378  ax-11 1379  ax-i12 1380  ax-bnd 1381  ax-4 1382  ax-17 1401  ax-i9 1405  ax-ial 1410  ax-i5r 1411  ax-ext 2004
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1329  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ne 2188  df-v 2535  df-dif 2898  df-un 2900  df-nul 3203  df-sn 3333  df-suc 4031
This theorem is referenced by:  nndc  4235  frecsuclem3  5872
  Copyright terms: Public domain W3C validator