![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeqpr | GIF version |
Description: Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.) |
Ref | Expression |
---|---|
opeqpr.1 | ⊢ 𝐴 ∈ V |
opeqpr.2 | ⊢ 𝐵 ∈ V |
opeqpr.3 | ⊢ 𝐶 ∈ V |
opeqpr.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
opeqpr | ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2042 | . 2 ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ {𝐶, 𝐷} = 〈𝐴, 𝐵〉) | |
2 | opeqpr.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | opeqpr.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | dfop 3548 | . . 3 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
5 | 4 | eqeq2i 2050 | . 2 ⊢ ({𝐶, 𝐷} = 〈𝐴, 𝐵〉 ↔ {𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}}) |
6 | opeqpr.3 | . . 3 ⊢ 𝐶 ∈ V | |
7 | opeqpr.4 | . . 3 ⊢ 𝐷 ∈ V | |
8 | snexgOLD 3935 | . . . 4 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
9 | 2, 8 | ax-mp 7 | . . 3 ⊢ {𝐴} ∈ V |
10 | prexgOLD 3946 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
11 | 2, 3, 10 | mp2an 402 | . . 3 ⊢ {𝐴, 𝐵} ∈ V |
12 | 6, 7, 9, 11 | preq12b 3541 | . 2 ⊢ ({𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
13 | 1, 5, 12 | 3bitri 195 | 1 ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ↔ wb 98 ∨ wo 629 = wceq 1243 ∈ wcel 1393 Vcvv 2557 {csn 3375 {cpr 3376 〈cop 3378 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 |
This theorem is referenced by: relop 4486 |
Copyright terms: Public domain | W3C validator |