Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > notab | GIF version |
Description: A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.) |
Ref | Expression |
---|---|
notab | ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2315 | . . 3 ⊢ {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} | |
2 | rabab 2575 | . . 3 ⊢ {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ ¬ 𝜑} | |
3 | 1, 2 | eqtr3i 2062 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = {𝑥 ∣ ¬ 𝜑} |
4 | difab 3206 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ V} ∖ {𝑥 ∣ 𝜑}) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} | |
5 | abid2 2158 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ V} = V | |
6 | 5 | difeq1i 3058 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ V} ∖ {𝑥 ∣ 𝜑}) = (V ∖ {𝑥 ∣ 𝜑}) |
7 | 4, 6 | eqtr3i 2062 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = (V ∖ {𝑥 ∣ 𝜑}) |
8 | 3, 7 | eqtr3i 2062 | 1 ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥 ∣ 𝜑}) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 97 = wceq 1243 ∈ wcel 1393 {cab 2026 {crab 2310 Vcvv 2557 ∖ cdif 2914 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rab 2315 df-v 2559 df-dif 2920 |
This theorem is referenced by: dfif3 3343 |
Copyright terms: Public domain | W3C validator |