Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  notab GIF version

Theorem notab 3207
 Description: A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.)
Assertion
Ref Expression
notab {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥𝜑})

Proof of Theorem notab
StepHypRef Expression
1 df-rab 2315 . . 3 {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)}
2 rabab 2575 . . 3 {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ ¬ 𝜑}
31, 2eqtr3i 2062 . 2 {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = {𝑥 ∣ ¬ 𝜑}
4 difab 3206 . . 3 ({𝑥𝑥 ∈ V} ∖ {𝑥𝜑}) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)}
5 abid2 2158 . . . 4 {𝑥𝑥 ∈ V} = V
65difeq1i 3058 . . 3 ({𝑥𝑥 ∈ V} ∖ {𝑥𝜑}) = (V ∖ {𝑥𝜑})
74, 6eqtr3i 2062 . 2 {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = (V ∖ {𝑥𝜑})
83, 7eqtr3i 2062 1 {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥𝜑})
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   ∧ wa 97   = wceq 1243   ∈ wcel 1393  {cab 2026  {crab 2310  Vcvv 2557   ∖ cdif 2914 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rab 2315  df-v 2559  df-dif 2920 This theorem is referenced by:  dfif3  3343
 Copyright terms: Public domain W3C validator