![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabab | GIF version |
Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
rabab | ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2315 | . 2 ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)} | |
2 | vex 2560 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 287 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | abbii 2153 | . 2 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)} |
5 | 1, 4 | eqtr4i 2063 | 1 ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 = wceq 1243 ∈ wcel 1393 {cab 2026 {crab 2310 Vcvv 2557 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-rab 2315 df-v 2559 |
This theorem is referenced by: notab 3207 intmin2 3641 euen1 6282 bj-omind 10058 |
Copyright terms: Public domain | W3C validator |