ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfae Structured version   GIF version

Theorem nfae 1604
Description: All variables are effectively bound in an identical variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfae zx x = y

Proof of Theorem nfae
StepHypRef Expression
1 hbae 1603 . 2 (x x = yzx x = y)
21nfi 1348 1 zx x = y
Colors of variables: wff set class
Syntax hints:  wal 1240  wnf 1346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-nf 1347
This theorem is referenced by:  nfnae  1607  sbequ5  1662  a16nf  1743  dvelimfv  1884  dvelimor  1891  copsexg  3972
  Copyright terms: Public domain W3C validator