ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnae Structured version   GIF version

Theorem nfnae 1607
Description: All variables are effectively bound in a distinct variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnae z ¬ x x = y

Proof of Theorem nfnae
StepHypRef Expression
1 nfae 1604 . 2 zx x = y
21nfn 1545 1 z ¬ x x = y
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wal 1240  wnf 1346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-fal 1248  df-nf 1347
This theorem is referenced by:  sbequ6  1663  dvelimfv  1884  nfsb4t  1887
  Copyright terms: Public domain W3C validator