ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbae Structured version   GIF version

Theorem hbae 1603
Description: All variables are effectively bound in an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
Assertion
Ref Expression
hbae (x x = yzx x = y)

Proof of Theorem hbae
StepHypRef Expression
1 ax12or 1400 . . . 4 (z z = x (z z = y z(x = yz x = y)))
2 ax10o 1600 . . . . . 6 (x x = z → (x x = yz x = y))
32alequcoms 1406 . . . . 5 (z z = x → (x x = yz x = y))
4 ax10o 1600 . . . . . . . . 9 (x x = y → (x x = yy x = y))
54pm2.43i 43 . . . . . . . 8 (x x = yy x = y)
6 ax10o 1600 . . . . . . . 8 (y y = z → (y x = yz x = y))
75, 6syl5 28 . . . . . . 7 (y y = z → (x x = yz x = y))
87alequcoms 1406 . . . . . 6 (z z = y → (x x = yz x = y))
9 ax-4 1397 . . . . . . . 8 (x x = yx = y)
109imim1i 54 . . . . . . 7 ((x = yz x = y) → (x x = yz x = y))
1110sps 1427 . . . . . 6 (z(x = yz x = y) → (x x = yz x = y))
128, 11jaoi 635 . . . . 5 ((z z = y z(x = yz x = y)) → (x x = yz x = y))
133, 12jaoi 635 . . . 4 ((z z = x (z z = y z(x = yz x = y))) → (x x = yz x = y))
141, 13ax-mp 7 . . 3 (x x = yz x = y)
1514a5i 1432 . 2 (x x = yxz x = y)
16 ax-7 1334 . 2 (xz x = yzx x = y)
1715, 16syl 14 1 (x x = yzx x = y)
Colors of variables: wff set class
Syntax hints:  wi 4   wo 628  wal 1240   = wceq 1242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  nfae  1604  hbaes  1605  hbnae  1606  dral1  1615  dral2  1616  drex2  1617  drex1  1676  aev  1690  sbcomxyyz  1843  exists1  1993
  Copyright terms: Public domain W3C validator