Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbaes | GIF version |
Description: Rule that applies hbae 1606 to antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hbalequs.1 | ⊢ (∀𝑧∀𝑥 𝑥 = 𝑦 → 𝜑) |
Ref | Expression |
---|---|
hbaes | ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbae 1606 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | |
2 | hbalequs.1 | . 2 ⊢ (∀𝑧∀𝑥 𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | syl 14 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1241 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |