ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbequ5 Structured version   GIF version

Theorem sbequ5 1662
Description: Substitution does not change an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 21-Dec-2004.)
Assertion
Ref Expression
sbequ5 ([w / z]x x = yx x = y)

Proof of Theorem sbequ5
StepHypRef Expression
1 nfae 1604 . 2 zx x = y
21sbf 1657 1 ([w / z]x x = yx x = y)
Colors of variables: wff set class
Syntax hints:  wb 98  wal 1240  [wsb 1642
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator