Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqelsuc | GIF version |
Description: A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.) |
Ref | Expression |
---|---|
eqelsuc.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eqelsuc | ⊢ (𝐴 = 𝐵 → 𝐴 ∈ suc 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqelsuc.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | sucid 4154 | . 2 ⊢ 𝐴 ∈ suc 𝐴 |
3 | suceq 4139 | . 2 ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) | |
4 | 2, 3 | syl5eleq 2126 | 1 ⊢ (𝐴 = 𝐵 → 𝐴 ∈ suc 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ∈ wcel 1393 Vcvv 2557 suc csuc 4102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-sn 3381 df-suc 4108 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |