ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl5eleq GIF version

Theorem syl5eleq 2126
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
syl5eleq.1 𝐴𝐵
syl5eleq.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
syl5eleq (𝜑𝐴𝐶)

Proof of Theorem syl5eleq
StepHypRef Expression
1 syl5eleq.1 . . 3 𝐴𝐵
21a1i 9 . 2 (𝜑𝐴𝐵)
3 syl5eleq.2 . 2 (𝜑𝐵 = 𝐶)
42, 3eleqtrd 2116 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  wcel 1393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-cleq 2033  df-clel 2036
This theorem is referenced by:  syl5eleqr  2127  opth1  3973  opth  3974  eqelsuc  4156  bj-nnelirr  10051
  Copyright terms: Public domain W3C validator