![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5eleq | GIF version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl5eleq.1 | ⊢ 𝐴 ∈ 𝐵 |
syl5eleq.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
syl5eleq | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eleq.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3 | syl5eleq.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
4 | 2, 3 | eleqtrd 2116 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ∈ wcel 1393 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-ial 1427 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 df-clel 2036 |
This theorem is referenced by: syl5eleqr 2127 opth1 3973 opth 3974 eqelsuc 4156 bj-nnelirr 10078 |
Copyright terms: Public domain | W3C validator |