ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elirrv Structured version   GIF version

Theorem elirrv 4226
Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
elirrv ¬ x x

Proof of Theorem elirrv
StepHypRef Expression
1 elirr 4224 1 ¬ x x
Colors of variables: wff set class
Syntax hints:  ¬ wn 3
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-setind 4220
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ne 2203  df-ral 2305  df-v 2553  df-dif 2914  df-sn 3373
This theorem is referenced by:  ruv  4228  tfrlemisucfn  5879  tfrlemisucaccv  5880  ltsopi  6304
  Copyright terms: Public domain W3C validator