ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xporderlem Unicode version

Theorem xporderlem 5852
Description: Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.)
Hypothesis
Ref Expression
xporderlem.1  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
Assertion
Ref Expression
xporderlem  |-  ( <.
a ,  b >. T <. c ,  d
>. 
<->  ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) )
Distinct variable groups:    x, A, y   
x, B, y    x, R, y    x, S, y   
x, a, y    x, b, y    x, c, y   
x, d, y
Allowed substitution hints:    A( a, b, c, d)    B( a, b, c, d)    R( a, b, c, d)    S( a, b, c, d)    T( x, y, a, b, c, d)

Proof of Theorem xporderlem
StepHypRef Expression
1 df-br 3765 . . 3  |-  ( <.
a ,  b >. T <. c ,  d
>. 
<-> 
<. <. a ,  b
>. ,  <. c ,  d >. >.  e.  T )
2 xporderlem.1 . . . 4  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
32eleq2i 2104 . . 3  |-  ( <. <. a ,  b >. ,  <. c ,  d
>. >.  e.  T  <->  <. <. a ,  b >. ,  <. c ,  d >. >.  e.  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B
) )  /\  (
( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) } )
41, 3bitri 173 . 2  |-  ( <.
a ,  b >. T <. c ,  d
>. 
<-> 
<. <. a ,  b
>. ,  <. c ,  d >. >.  e.  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x ) R ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x ) S ( 2nd `  y ) ) ) ) } )
5 vex 2560 . . . 4  |-  a  e. 
_V
6 vex 2560 . . . 4  |-  b  e. 
_V
75, 6opex 3966 . . 3  |-  <. a ,  b >.  e.  _V
8 vex 2560 . . . 4  |-  c  e. 
_V
9 vex 2560 . . . 4  |-  d  e. 
_V
108, 9opex 3966 . . 3  |-  <. c ,  d >.  e.  _V
11 eleq1 2100 . . . . . 6  |-  ( x  =  <. a ,  b
>.  ->  ( x  e.  ( A  X.  B
)  <->  <. a ,  b
>.  e.  ( A  X.  B ) ) )
12 opelxp 4374 . . . . . 6  |-  ( <.
a ,  b >.  e.  ( A  X.  B
)  <->  ( a  e.  A  /\  b  e.  B ) )
1311, 12syl6bb 185 . . . . 5  |-  ( x  =  <. a ,  b
>.  ->  ( x  e.  ( A  X.  B
)  <->  ( a  e.  A  /\  b  e.  B ) ) )
1413anbi1d 438 . . . 4  |-  ( x  =  <. a ,  b
>.  ->  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B
) )  <->  ( (
a  e.  A  /\  b  e.  B )  /\  y  e.  ( A  X.  B ) ) ) )
155, 6op1std 5775 . . . . . 6  |-  ( x  =  <. a ,  b
>.  ->  ( 1st `  x
)  =  a )
1615breq1d 3774 . . . . 5  |-  ( x  =  <. a ,  b
>.  ->  ( ( 1st `  x ) R ( 1st `  y )  <-> 
a R ( 1st `  y ) ) )
1715eqeq1d 2048 . . . . . 6  |-  ( x  =  <. a ,  b
>.  ->  ( ( 1st `  x )  =  ( 1st `  y )  <-> 
a  =  ( 1st `  y ) ) )
185, 6op2ndd 5776 . . . . . . 7  |-  ( x  =  <. a ,  b
>.  ->  ( 2nd `  x
)  =  b )
1918breq1d 3774 . . . . . 6  |-  ( x  =  <. a ,  b
>.  ->  ( ( 2nd `  x ) S ( 2nd `  y )  <-> 
b S ( 2nd `  y ) ) )
2017, 19anbi12d 442 . . . . 5  |-  ( x  =  <. a ,  b
>.  ->  ( ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x ) S ( 2nd `  y ) )  <->  ( a  =  ( 1st `  y
)  /\  b S
( 2nd `  y
) ) ) )
2116, 20orbi12d 707 . . . 4  |-  ( x  =  <. a ,  b
>.  ->  ( ( ( 1st `  x ) R ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x ) S ( 2nd `  y ) ) )  <->  ( a R ( 1st `  y
)  \/  ( a  =  ( 1st `  y
)  /\  b S
( 2nd `  y
) ) ) ) )
2214, 21anbi12d 442 . . 3  |-  ( x  =  <. a ,  b
>.  ->  ( ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) )  <-> 
( ( ( a  e.  A  /\  b  e.  B )  /\  y  e.  ( A  X.  B
) )  /\  (
a R ( 1st `  y )  \/  (
a  =  ( 1st `  y )  /\  b S ( 2nd `  y
) ) ) ) ) )
23 eleq1 2100 . . . . . 6  |-  ( y  =  <. c ,  d
>.  ->  ( y  e.  ( A  X.  B
)  <->  <. c ,  d
>.  e.  ( A  X.  B ) ) )
24 opelxp 4374 . . . . . 6  |-  ( <.
c ,  d >.  e.  ( A  X.  B
)  <->  ( c  e.  A  /\  d  e.  B ) )
2523, 24syl6bb 185 . . . . 5  |-  ( y  =  <. c ,  d
>.  ->  ( y  e.  ( A  X.  B
)  <->  ( c  e.  A  /\  d  e.  B ) ) )
2625anbi2d 437 . . . 4  |-  ( y  =  <. c ,  d
>.  ->  ( ( ( a  e.  A  /\  b  e.  B )  /\  y  e.  ( A  X.  B ) )  <-> 
( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )
) ) )
278, 9op1std 5775 . . . . . 6  |-  ( y  =  <. c ,  d
>.  ->  ( 1st `  y
)  =  c )
2827breq2d 3776 . . . . 5  |-  ( y  =  <. c ,  d
>.  ->  ( a R ( 1st `  y
)  <->  a R c ) )
2927eqeq2d 2051 . . . . . 6  |-  ( y  =  <. c ,  d
>.  ->  ( a  =  ( 1st `  y
)  <->  a  =  c ) )
308, 9op2ndd 5776 . . . . . . 7  |-  ( y  =  <. c ,  d
>.  ->  ( 2nd `  y
)  =  d )
3130breq2d 3776 . . . . . 6  |-  ( y  =  <. c ,  d
>.  ->  ( b S ( 2nd `  y
)  <->  b S d ) )
3229, 31anbi12d 442 . . . . 5  |-  ( y  =  <. c ,  d
>.  ->  ( ( a  =  ( 1st `  y
)  /\  b S
( 2nd `  y
) )  <->  ( a  =  c  /\  b S d ) ) )
3328, 32orbi12d 707 . . . 4  |-  ( y  =  <. c ,  d
>.  ->  ( ( a R ( 1st `  y
)  \/  ( a  =  ( 1st `  y
)  /\  b S
( 2nd `  y
) ) )  <->  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) )
3426, 33anbi12d 442 . . 3  |-  ( y  =  <. c ,  d
>.  ->  ( ( ( ( a  e.  A  /\  b  e.  B
)  /\  y  e.  ( A  X.  B
) )  /\  (
a R ( 1st `  y )  \/  (
a  =  ( 1st `  y )  /\  b S ( 2nd `  y
) ) ) )  <-> 
( ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) ) )
357, 10, 22, 34opelopab 4008 . 2  |-  ( <. <. a ,  b >. ,  <. c ,  d
>. >.  e.  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x ) R ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x ) S ( 2nd `  y ) ) ) ) }  <-> 
( ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) )
36 an4 520 . . 3  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B ) )  <->  ( (
a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) ) )
3736anbi1i 431 . 2  |-  ( ( ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  <->  ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) ) )
384, 35, 373bitri 195 1  |-  ( <.
a ,  b >. T <. c ,  d
>. 
<->  ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    \/ wo 629    = wceq 1243    e. wcel 1393   <.cop 3378   class class class wbr 3764   {copab 3817    X. cxp 4343   ` cfv 4902   1stc1st 5765   2ndc2nd 5766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fv 4910  df-1st 5767  df-2nd 5768
This theorem is referenced by:  poxp  5853
  Copyright terms: Public domain W3C validator