ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2v Structured version   Unicode version

Theorem sbco2v 1818
Description: This is a version of sbco2 1836 where is distinct from . (Contributed by Jim Kingdon, 12-Feb-2018.)
Hypothesis
Ref Expression
sbco2v.1
Assertion
Ref Expression
sbco2v
Distinct variable group:   ,
Allowed substitution hints:   (,,)

Proof of Theorem sbco2v
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sbco2v.1 . . . 4
21sbco2vlem 1817 . . 3
32sbbii 1645 . 2
4 ax-17 1416 . . 3
54sbco2vlem 1817 . 2
6 ax-17 1416 . . 3
76sbco2vlem 1817 . 2
83, 5, 73bitr3i 199 1
Colors of variables: wff set class
Syntax hints:   wi 4   wb 98  wal 1240  wsb 1642
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643
This theorem is referenced by:  nfsb  1819  equsb3  1822  sbn  1823  sbim  1824  sbor  1825  sban  1826  sbco2vd  1838  sbco3v  1840  sbcom2v2  1859  sbcom2  1860  dfsb7  1864  sb7f  1865  sbal  1873  sbal1  1875  sbex  1877
  Copyright terms: Public domain W3C validator