Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbbii | Unicode version |
Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbbii.1 |
Ref | Expression |
---|---|
sbbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbii.1 | . . . 4 | |
2 | 1 | biimpi 113 | . . 3 |
3 | 2 | sbimi 1647 | . 2 |
4 | 1 | biimpri 124 | . . 3 |
5 | 4 | sbimi 1647 | . 2 |
6 | 3, 5 | impbii 117 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 98 wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-sb 1646 |
This theorem is referenced by: sbco2v 1821 equsb3 1825 sbn 1826 sbim 1827 sbor 1828 sban 1829 sb3an 1832 sbbi 1833 sbco2h 1838 sbco2d 1840 sbco2vd 1841 sbco3v 1843 sbco3 1848 elsb3 1852 elsb4 1853 sbcom2v2 1862 sbcom2 1863 dfsb7 1867 sb7f 1868 sb7af 1869 sbal 1876 sbal1 1878 sbex 1880 sbco4lem 1882 sbco4 1883 sbmo 1959 eqsb3 2141 clelsb3 2142 clelsb4 2143 sbabel 2203 sbralie 2546 sbcco 2785 exss 3963 inopab 4468 isarep1 4985 |
Copyright terms: Public domain | W3C validator |