ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspsbc Unicode version

Theorem rspsbc 2840
Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1658 and spsbc 2775. See also rspsbca 2841 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
rspsbc  |-  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  [. A  /  x ]. ph ) )
Distinct variable group:    x, B
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem rspsbc
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cbvralsv 2544 . 2  |-  ( A. x  e.  B  ph  <->  A. y  e.  B  [ y  /  x ] ph )
2 dfsbcq2 2767 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
32rspcv 2652 . 2  |-  ( A  e.  B  ->  ( A. y  e.  B  [ y  /  x ] ph  ->  [. A  /  x ]. ph ) )
41, 3syl5bi 141 1  |-  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  [. A  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1393   [wsb 1645   A.wral 2306   [.wsbc 2764
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-sbc 2765
This theorem is referenced by:  rspsbca  2841  sbcth2  2845  rspcsbela  2905  riota5f  5492  riotass2  5494  fzrevral  8967
  Copyright terms: Public domain W3C validator