Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrab Unicode version

Theorem rexrab 2704
 Description: Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab.1
Assertion
Ref Expression
rexrab
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)   ()   (,)   ()

Proof of Theorem rexrab
StepHypRef Expression
1 ralab.1 . . . . 5
21elrab 2698 . . . 4
32anbi1i 431 . . 3
4 anass 381 . . 3
53, 4bitri 173 . 2
65rexbii2 2335 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98   wcel 1393  wrex 2307  crab 2310 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-rab 2315  df-v 2559 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator