ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbii2 Structured version   Unicode version

Theorem rexbii2 2329
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
rexbii2.1
Assertion
Ref Expression
rexbii2

Proof of Theorem rexbii2
StepHypRef Expression
1 rexbii2.1 . . 3
21exbii 1493 . 2
3 df-rex 2306 . 2
4 df-rex 2306 . 2
52, 3, 43bitr4i 201 1
Colors of variables: wff set class
Syntax hints:   wa 97   wb 98  wex 1378   wcel 1390  wrex 2301
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-rex 2306
This theorem is referenced by:  rexeqbii  2331  rexbiia  2333  rexrab  2698  rexdifsn  3490  bnd2  3917  rexuz2  8260  rexrp  8340
  Copyright terms: Public domain W3C validator