Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reluni | Unicode version |
Description: The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
reluni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 3710 | . . 3 | |
2 | 1 | releqi 4423 | . 2 |
3 | reliun 4458 | . 2 | |
4 | 2, 3 | bitri 173 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 98 wral 2306 cuni 3580 ciun 3657 wrel 4350 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-in 2924 df-ss 2931 df-uni 3581 df-iun 3659 df-rel 4352 |
This theorem is referenced by: fununi 4967 tfrlem6 5932 |
Copyright terms: Public domain | W3C validator |