ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relint Unicode version

Theorem relint 4461
Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
relint  |-  ( E. x  e.  A  Rel  x  ->  Rel  |^| A )
Distinct variable group:    x, A

Proof of Theorem relint
StepHypRef Expression
1 reliin 4459 . 2  |-  ( E. x  e.  A  Rel  x  ->  Rel  |^|_ x  e.  A  x )
2 intiin 3711 . . 3  |-  |^| A  =  |^|_ x  e.  A  x
32releqi 4423 . 2  |-  ( Rel  |^| A  <->  Rel  |^|_ x  e.  A  x )
41, 3sylibr 137 1  |-  ( E. x  e.  A  Rel  x  ->  Rel  |^| A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2307   |^|cint 3615   |^|_ciin 3658   Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-in 2924  df-ss 2931  df-int 3616  df-iin 3660  df-rel 4352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator