Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnn0d Unicode version

Theorem nnnn0d 8235
 Description: A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
nnnn0d.1
Assertion
Ref Expression
nnnn0d

Proof of Theorem nnnn0d
StepHypRef Expression
1 nnssnn0 8184 . 2
2 nnnn0d.1 . 2
31, 2sseldi 2943 1
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1393  cn 7914  cn0 8181 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-n0 8182 This theorem is referenced by:  nn0ge2m1nn0  8243  nnzd  8359  eluzge2nn0  8512  expinnval  9258  expgt1  9293  expaddzaplem  9298  expaddzap  9299  expmulzap  9301  expnbnd  9372  resqrexlemnm  9616  resqrexlemcvg  9617
 Copyright terms: Public domain W3C validator