Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsb4or | Unicode version |
Description: A variable not free remains so after substitution with a distinct variable. (Contributed by Jim Kingdon, 11-May-2018.) |
Ref | Expression |
---|---|
nfsb4or.1 |
Ref | Expression |
---|---|
nfsb4or |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsb4or.1 | . . 3 | |
2 | 1 | nfsb 1822 | . 2 |
3 | sbequ 1721 | . 2 | |
4 | 2, 3 | dvelimor 1894 | 1 |
Colors of variables: wff set class |
Syntax hints: wo 629 wal 1241 wnf 1349 wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |