ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptun Unicode version

Theorem mptun 5029
Description: Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
mptun  |-  ( x  e.  ( A  u.  B )  |->  C )  =  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )

Proof of Theorem mptun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-mpt 3820 . 2  |-  ( x  e.  ( A  u.  B )  |->  C )  =  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  =  C ) }
2 df-mpt 3820 . . . 4  |-  ( x  e.  A  |->  C )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }
3 df-mpt 3820 . . . 4  |-  ( x  e.  B  |->  C )  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) }
42, 3uneq12i 3095 . . 3  |-  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )  =  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) } )
5 elun 3084 . . . . . . 7  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
65anbi1i 431 . . . . . 6  |-  ( ( x  e.  ( A  u.  B )  /\  y  =  C )  <->  ( ( x  e.  A  \/  x  e.  B
)  /\  y  =  C ) )
7 andir 732 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  y  =  C )  <->  ( (
x  e.  A  /\  y  =  C )  \/  ( x  e.  B  /\  y  =  C
) ) )
86, 7bitri 173 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  y  =  C )  <->  ( ( x  e.  A  /\  y  =  C
)  \/  ( x  e.  B  /\  y  =  C ) ) )
98opabbii 3824 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  =  C ) }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  C
)  \/  ( x  e.  B  /\  y  =  C ) ) }
10 unopab 3836 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  C
)  \/  ( x  e.  B  /\  y  =  C ) ) }
119, 10eqtr4i 2063 . . 3  |-  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  =  C ) }  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) } )
124, 11eqtr4i 2063 . 2  |-  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )  =  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  =  C ) }
131, 12eqtr4i 2063 1  |-  ( x  e.  ( A  u.  B )  |->  C )  =  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    \/ wo 629    = wceq 1243    e. wcel 1393    u. cun 2915   {copab 3817    |-> cmpt 3818
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-opab 3819  df-mpt 3820
This theorem is referenced by:  fmptap  5353  fmptapd  5354
  Copyright terms: Public domain W3C validator