ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inssdif0im Unicode version

Theorem inssdif0im 3291
Description: Intersection, subclass, and difference relationship. In classical logic the converse would also hold. (Contributed by Jim Kingdon, 3-Aug-2018.)
Assertion
Ref Expression
inssdif0im  |-  ( ( A  i^i  B ) 
C_  C  ->  ( A  i^i  ( B  \  C ) )  =  (/) )

Proof of Theorem inssdif0im
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3126 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
21imbi1i 227 . . . . 5  |-  ( ( x  e.  ( A  i^i  B )  ->  x  e.  C )  <->  ( ( x  e.  A  /\  x  e.  B
)  ->  x  e.  C ) )
3 imanim 785 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  B
)  ->  x  e.  C )  ->  -.  ( ( x  e.  A  /\  x  e.  B )  /\  -.  x  e.  C )
)
42, 3sylbi 114 . . . 4  |-  ( ( x  e.  ( A  i^i  B )  ->  x  e.  C )  ->  -.  ( ( x  e.  A  /\  x  e.  B )  /\  -.  x  e.  C )
)
5 eldif 2927 . . . . . 6  |-  ( x  e.  ( B  \  C )  <->  ( x  e.  B  /\  -.  x  e.  C ) )
65anbi2i 430 . . . . 5  |-  ( ( x  e.  A  /\  x  e.  ( B  \  C ) )  <->  ( x  e.  A  /\  (
x  e.  B  /\  -.  x  e.  C
) ) )
7 elin 3126 . . . . 5  |-  ( x  e.  ( A  i^i  ( B  \  C ) )  <->  ( x  e.  A  /\  x  e.  ( B  \  C
) ) )
8 anass 381 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  -.  x  e.  C )  <->  ( x  e.  A  /\  (
x  e.  B  /\  -.  x  e.  C
) ) )
96, 7, 83bitr4ri 202 . . . 4  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  -.  x  e.  C )  <->  x  e.  ( A  i^i  ( B  \  C ) ) )
104, 9sylnib 601 . . 3  |-  ( ( x  e.  ( A  i^i  B )  ->  x  e.  C )  ->  -.  x  e.  ( A  i^i  ( B 
\  C ) ) )
1110alimi 1344 . 2  |-  ( A. x ( x  e.  ( A  i^i  B
)  ->  x  e.  C )  ->  A. x  -.  x  e.  ( A  i^i  ( B  \  C ) ) )
12 dfss2 2934 . 2  |-  ( ( A  i^i  B ) 
C_  C  <->  A. x
( x  e.  ( A  i^i  B )  ->  x  e.  C
) )
13 eq0 3239 . 2  |-  ( ( A  i^i  ( B 
\  C ) )  =  (/)  <->  A. x  -.  x  e.  ( A  i^i  ( B  \  C ) ) )
1411, 12, 133imtr4i 190 1  |-  ( ( A  i^i  B ) 
C_  C  ->  ( A  i^i  ( B  \  C ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97   A.wal 1241    = wceq 1243    e. wcel 1393    \ cdif 2914    i^i cin 2916    C_ wss 2917   (/)c0 3224
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-dif 2920  df-in 2924  df-ss 2931  df-nul 3225
This theorem is referenced by:  disjdif  3296
  Copyright terms: Public domain W3C validator