ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imanim Structured version   Unicode version

Theorem imanim 784
Description: Express implication in terms of conjunction. The converse only holds given a decidability condition; see imandc 785. (Contributed by Jim Kingdon, 24-Dec-2017.)
Assertion
Ref Expression
imanim

Proof of Theorem imanim
StepHypRef Expression
1 annimim 781 . 2
21con2i 557 1
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-in1 544  ax-in2 545
This theorem is referenced by:  difdif  3063  npss0  3260  ssdif0im  3280  inssdif0im  3285  nominpos  7919
  Copyright terms: Public domain W3C validator