ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnelpssd Unicode version

Theorem ssnelpssd 3290
Description: Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss 3289. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ssnelpssd.1  |-  ( ph  ->  A  C_  B )
ssnelpssd.2  |-  ( ph  ->  C  e.  B )
ssnelpssd.3  |-  ( ph  ->  -.  C  e.  A
)
Assertion
Ref Expression
ssnelpssd  |-  ( ph  ->  A  C.  B )

Proof of Theorem ssnelpssd
StepHypRef Expression
1 ssnelpssd.2 . 2  |-  ( ph  ->  C  e.  B )
2 ssnelpssd.3 . 2  |-  ( ph  ->  -.  C  e.  A
)
3 ssnelpssd.1 . . 3  |-  ( ph  ->  A  C_  B )
4 ssnelpss 3289 . . 3  |-  ( A 
C_  B  ->  (
( C  e.  B  /\  -.  C  e.  A
)  ->  A  C.  B
) )
53, 4syl 14 . 2  |-  ( ph  ->  ( ( C  e.  B  /\  -.  C  e.  A )  ->  A  C.  B ) )
61, 2, 5mp2and 409 1  |-  ( ph  ->  A  C.  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    e. wcel 1393    C_ wss 2917    C. wpss 2918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-cleq 2033  df-clel 2036  df-ne 2206  df-pss 2933
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator