![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssnelpssd | GIF version |
Description: Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss 3289. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssnelpssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ssnelpssd.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
ssnelpssd.3 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Ref | Expression |
---|---|
ssnelpssd | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssnelpssd.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
2 | ssnelpssd.3 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | |
3 | ssnelpssd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
4 | ssnelpss 3289 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴) → 𝐴 ⊊ 𝐵)) | |
5 | 3, 4 | syl 14 | . 2 ⊢ (𝜑 → ((𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴) → 𝐴 ⊊ 𝐵)) |
6 | 1, 2, 5 | mp2and 409 | 1 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ∈ wcel 1393 ⊆ wss 2917 ⊊ wpss 2918 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-ial 1427 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 df-clel 2036 df-ne 2206 df-pss 2933 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |