ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopabeq Unicode version

Theorem funopabeq 4936
Description: A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995.)
Assertion
Ref Expression
funopabeq  |-  Fun  { <. x ,  y >.  |  y  =  A }
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem funopabeq
StepHypRef Expression
1 funopab 4935 . 2  |-  ( Fun 
{ <. x ,  y
>.  |  y  =  A }  <->  A. x E* y 
y  =  A )
2 moeq 2716 . 2  |-  E* y 
y  =  A
31, 2mpgbir 1342 1  |-  Fun  { <. x ,  y >.  |  y  =  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1243   E*wmo 1901   {copab 3817   Fun wfun 4896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-fun 4904
This theorem is referenced by:  funopab4  4937
  Copyright terms: Public domain W3C validator