ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmdifcom Unicode version

Theorem fndmdifcom 5273
Description: The difference set between two functions is commutative. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdifcom  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  dom  ( G  \  F ) )

Proof of Theorem fndmdifcom
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 necom 2289 . . . 4  |-  ( ( F `  x )  =/=  ( G `  x )  <->  ( G `  x )  =/=  ( F `  x )
)
21a1i 9 . . 3  |-  ( x  e.  A  ->  (
( F `  x
)  =/=  ( G `
 x )  <->  ( G `  x )  =/=  ( F `  x )
) )
32rabbiia 2547 . 2  |-  { x  e.  A  |  ( F `  x )  =/=  ( G `  x
) }  =  {
x  e.  A  | 
( G `  x
)  =/=  ( F `
 x ) }
4 fndmdif 5272 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  {
x  e.  A  | 
( F `  x
)  =/=  ( G `
 x ) } )
5 fndmdif 5272 . . 3  |-  ( ( G  Fn  A  /\  F  Fn  A )  ->  dom  ( G  \  F )  =  {
x  e.  A  | 
( G `  x
)  =/=  ( F `
 x ) } )
65ancoms 255 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( G  \  F )  =  {
x  e.  A  | 
( G `  x
)  =/=  ( F `
 x ) } )
73, 4, 63eqtr4a 2098 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  dom  ( G  \  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393    =/= wne 2204   {crab 2310    \ cdif 2914   dom cdm 4345    Fn wfn 4897   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator