![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr4a | Unicode version |
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4a.1 |
![]() ![]() ![]() ![]() |
3eqtr4a.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtr4a.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr4a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4a.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3eqtr4a.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl6eq 2088 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3eqtr4a.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtr4d 2075 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-4 1400 ax-17 1419 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 |
This theorem is referenced by: uniintsnr 3651 fndmdifcom 5273 offres 5762 1stval2 5782 2ndval2 5783 ecovcom 6213 ecovass 6215 ecovdi 6217 zeo 8343 xnegneg 8746 fzsuc2 8941 expnegap0 9263 absexp 9675 sqr2irrlem 9877 |
Copyright terms: Public domain | W3C validator |