Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftfund Unicode version

Theorem fliftfund 5437
 Description: The function is the unique function defined by , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1
flift.2
flift.3
fliftfun.4
fliftfun.5
fliftfund.6
Assertion
Ref Expression
fliftfund
Distinct variable groups:   ,   ,   ,   ,,   ,   ,   ,,   ,,   ,,
Allowed substitution hints:   ()   ()   ()   ()   ()

Proof of Theorem fliftfund
StepHypRef Expression
1 fliftfund.6 . . . . 5
213exp2 1122 . . . 4
32imp32 244 . . 3
43ralrimivva 2401 . 2
5 flift.1 . . 3
6 flift.2 . . 3
7 flift.3 . . 3
8 fliftfun.4 . . 3
9 fliftfun.5 . . 3
105, 6, 7, 8, 9fliftfun 5436 . 2
114, 10mpbird 156 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   w3a 885   wceq 1243   wcel 1393  wral 2306  cop 3378   cmpt 3818   crn 4346   wfun 4896 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fv 4910 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator