ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eueq2dc Unicode version

Theorem eueq2dc 2714
Description: Equality has existential uniqueness (split into 2 cases). (Contributed by NM, 5-Apr-1995.)
Hypotheses
Ref Expression
eueq2dc.1  |-  A  e. 
_V
eueq2dc.2  |-  B  e. 
_V
Assertion
Ref Expression
eueq2dc  |-  (DECID  ph  ->  E! x ( ( ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B ) ) )
Distinct variable groups:    ph, x    x, A    x, B

Proof of Theorem eueq2dc
StepHypRef Expression
1 df-dc 743 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 notnot 559 . . . . 5  |-  ( ph  ->  -.  -.  ph )
3 eueq2dc.1 . . . . . . 7  |-  A  e. 
_V
43eueq1 2713 . . . . . 6  |-  E! x  x  =  A
5 euanv 1957 . . . . . . 7  |-  ( E! x ( ph  /\  x  =  A )  <->  (
ph  /\  E! x  x  =  A )
)
65biimpri 124 . . . . . 6  |-  ( (
ph  /\  E! x  x  =  A )  ->  E! x ( ph  /\  x  =  A ) )
74, 6mpan2 401 . . . . 5  |-  ( ph  ->  E! x ( ph  /\  x  =  A ) )
8 euorv 1927 . . . . 5  |-  ( ( -.  -.  ph  /\  E! x ( ph  /\  x  =  A )
)  ->  E! x
( -.  ph  \/  ( ph  /\  x  =  A ) ) )
92, 7, 8syl2anc 391 . . . 4  |-  ( ph  ->  E! x ( -. 
ph  \/  ( ph  /\  x  =  A ) ) )
10 orcom 647 . . . . . 6  |-  ( ( -.  ph  \/  ( ph  /\  x  =  A ) )  <->  ( ( ph  /\  x  =  A )  \/  -.  ph ) )
112bianfd 855 . . . . . . 7  |-  ( ph  ->  ( -.  ph  <->  ( -.  ph 
/\  x  =  B ) ) )
1211orbi2d 704 . . . . . 6  |-  ( ph  ->  ( ( ( ph  /\  x  =  A )  \/  -.  ph )  <->  ( ( ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B ) ) ) )
1310, 12syl5bb 181 . . . . 5  |-  ( ph  ->  ( ( -.  ph  \/  ( ph  /\  x  =  A ) )  <->  ( ( ph  /\  x  =  A )  \/  ( -. 
ph  /\  x  =  B ) ) ) )
1413eubidv 1908 . . . 4  |-  ( ph  ->  ( E! x ( -.  ph  \/  ( ph  /\  x  =  A ) )  <->  E! x
( ( ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B )
) ) )
159, 14mpbid 135 . . 3  |-  ( ph  ->  E! x ( (
ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B ) ) )
16 eueq2dc.2 . . . . . . 7  |-  B  e. 
_V
1716eueq1 2713 . . . . . 6  |-  E! x  x  =  B
18 euanv 1957 . . . . . . 7  |-  ( E! x ( -.  ph  /\  x  =  B )  <-> 
( -.  ph  /\  E! x  x  =  B ) )
1918biimpri 124 . . . . . 6  |-  ( ( -.  ph  /\  E! x  x  =  B )  ->  E! x ( -. 
ph  /\  x  =  B ) )
2017, 19mpan2 401 . . . . 5  |-  ( -. 
ph  ->  E! x ( -.  ph  /\  x  =  B ) )
21 euorv 1927 . . . . 5  |-  ( ( -.  ph  /\  E! x
( -.  ph  /\  x  =  B )
)  ->  E! x
( ph  \/  ( -.  ph  /\  x  =  B ) ) )
2220, 21mpdan 398 . . . 4  |-  ( -. 
ph  ->  E! x (
ph  \/  ( -.  ph 
/\  x  =  B ) ) )
23 id 19 . . . . . . 7  |-  ( -. 
ph  ->  -.  ph )
2423bianfd 855 . . . . . 6  |-  ( -. 
ph  ->  ( ph  <->  ( ph  /\  x  =  A ) ) )
2524orbi1d 705 . . . . 5  |-  ( -. 
ph  ->  ( ( ph  \/  ( -.  ph  /\  x  =  B )
)  <->  ( ( ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B ) ) ) )
2625eubidv 1908 . . . 4  |-  ( -. 
ph  ->  ( E! x
( ph  \/  ( -.  ph  /\  x  =  B ) )  <->  E! x
( ( ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B )
) ) )
2722, 26mpbid 135 . . 3  |-  ( -. 
ph  ->  E! x ( ( ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B ) ) )
2815, 27jaoi 636 . 2  |-  ( (
ph  \/  -.  ph )  ->  E! x ( (
ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B ) ) )
291, 28sylbi 114 1  |-  (DECID  ph  ->  E! x ( ( ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    \/ wo 629  DECID wdc 742    = wceq 1243    e. wcel 1393   E!weu 1900   _Vcvv 2557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-dc 743  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-v 2559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator