Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eueq2dc GIF version

Theorem eueq2dc 2714
 Description: Equality has existential uniqueness (split into 2 cases). (Contributed by NM, 5-Apr-1995.)
Hypotheses
Ref Expression
eueq2dc.1 𝐴 ∈ V
eueq2dc.2 𝐵 ∈ V
Assertion
Ref Expression
eueq2dc (DECID 𝜑 → ∃!𝑥((𝜑𝑥 = 𝐴) ∨ (¬ 𝜑𝑥 = 𝐵)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eueq2dc
StepHypRef Expression
1 df-dc 743 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 notnot 559 . . . . 5 (𝜑 → ¬ ¬ 𝜑)
3 eueq2dc.1 . . . . . . 7 𝐴 ∈ V
43eueq1 2713 . . . . . 6 ∃!𝑥 𝑥 = 𝐴
5 euanv 1957 . . . . . . 7 (∃!𝑥(𝜑𝑥 = 𝐴) ↔ (𝜑 ∧ ∃!𝑥 𝑥 = 𝐴))
65biimpri 124 . . . . . 6 ((𝜑 ∧ ∃!𝑥 𝑥 = 𝐴) → ∃!𝑥(𝜑𝑥 = 𝐴))
74, 6mpan2 401 . . . . 5 (𝜑 → ∃!𝑥(𝜑𝑥 = 𝐴))
8 euorv 1927 . . . . 5 ((¬ ¬ 𝜑 ∧ ∃!𝑥(𝜑𝑥 = 𝐴)) → ∃!𝑥𝜑 ∨ (𝜑𝑥 = 𝐴)))
92, 7, 8syl2anc 391 . . . 4 (𝜑 → ∃!𝑥𝜑 ∨ (𝜑𝑥 = 𝐴)))
10 orcom 647 . . . . . 6 ((¬ 𝜑 ∨ (𝜑𝑥 = 𝐴)) ↔ ((𝜑𝑥 = 𝐴) ∨ ¬ 𝜑))
112bianfd 855 . . . . . . 7 (𝜑 → (¬ 𝜑 ↔ (¬ 𝜑𝑥 = 𝐵)))
1211orbi2d 704 . . . . . 6 (𝜑 → (((𝜑𝑥 = 𝐴) ∨ ¬ 𝜑) ↔ ((𝜑𝑥 = 𝐴) ∨ (¬ 𝜑𝑥 = 𝐵))))
1310, 12syl5bb 181 . . . . 5 (𝜑 → ((¬ 𝜑 ∨ (𝜑𝑥 = 𝐴)) ↔ ((𝜑𝑥 = 𝐴) ∨ (¬ 𝜑𝑥 = 𝐵))))
1413eubidv 1908 . . . 4 (𝜑 → (∃!𝑥𝜑 ∨ (𝜑𝑥 = 𝐴)) ↔ ∃!𝑥((𝜑𝑥 = 𝐴) ∨ (¬ 𝜑𝑥 = 𝐵))))
159, 14mpbid 135 . . 3 (𝜑 → ∃!𝑥((𝜑𝑥 = 𝐴) ∨ (¬ 𝜑𝑥 = 𝐵)))
16 eueq2dc.2 . . . . . . 7 𝐵 ∈ V
1716eueq1 2713 . . . . . 6 ∃!𝑥 𝑥 = 𝐵
18 euanv 1957 . . . . . . 7 (∃!𝑥𝜑𝑥 = 𝐵) ↔ (¬ 𝜑 ∧ ∃!𝑥 𝑥 = 𝐵))
1918biimpri 124 . . . . . 6 ((¬ 𝜑 ∧ ∃!𝑥 𝑥 = 𝐵) → ∃!𝑥𝜑𝑥 = 𝐵))
2017, 19mpan2 401 . . . . 5 𝜑 → ∃!𝑥𝜑𝑥 = 𝐵))
21 euorv 1927 . . . . 5 ((¬ 𝜑 ∧ ∃!𝑥𝜑𝑥 = 𝐵)) → ∃!𝑥(𝜑 ∨ (¬ 𝜑𝑥 = 𝐵)))
2220, 21mpdan 398 . . . 4 𝜑 → ∃!𝑥(𝜑 ∨ (¬ 𝜑𝑥 = 𝐵)))
23 id 19 . . . . . . 7 𝜑 → ¬ 𝜑)
2423bianfd 855 . . . . . 6 𝜑 → (𝜑 ↔ (𝜑𝑥 = 𝐴)))
2524orbi1d 705 . . . . 5 𝜑 → ((𝜑 ∨ (¬ 𝜑𝑥 = 𝐵)) ↔ ((𝜑𝑥 = 𝐴) ∨ (¬ 𝜑𝑥 = 𝐵))))
2625eubidv 1908 . . . 4 𝜑 → (∃!𝑥(𝜑 ∨ (¬ 𝜑𝑥 = 𝐵)) ↔ ∃!𝑥((𝜑𝑥 = 𝐴) ∨ (¬ 𝜑𝑥 = 𝐵))))
2722, 26mpbid 135 . . 3 𝜑 → ∃!𝑥((𝜑𝑥 = 𝐴) ∨ (¬ 𝜑𝑥 = 𝐵)))
2815, 27jaoi 636 . 2 ((𝜑 ∨ ¬ 𝜑) → ∃!𝑥((𝜑𝑥 = 𝐴) ∨ (¬ 𝜑𝑥 = 𝐵)))
291, 28sylbi 114 1 (DECID 𝜑 → ∃!𝑥((𝜑𝑥 = 𝐴) ∨ (¬ 𝜑𝑥 = 𝐵)))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 97   ∨ wo 629  DECID wdc 742   = wceq 1243   ∈ wcel 1393  ∃!weu 1900  Vcvv 2557 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-dc 743  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-v 2559 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator