ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bianfd Structured version   Unicode version

Theorem bianfd 854
Description: A wff conjoined with falsehood is false. (Contributed by NM, 27-Mar-1995.) (Proof shortened by Wolf Lammen, 5-Nov-2013.)
Hypothesis
Ref Expression
bianfd.1
Assertion
Ref Expression
bianfd

Proof of Theorem bianfd
StepHypRef Expression
1 bianfd.1 . 2
21intnanrd 840 . 2
31, 22falsed 617 1
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wa 97   wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  eueq2dc  2708  eueq3dc  2709
  Copyright terms: Public domain W3C validator