ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ereldm Unicode version

Theorem ereldm 6149
Description: Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ereldm.1  |-  ( ph  ->  R  Er  X )
ereldm.2  |-  ( ph  ->  [ A ] R  =  [ B ] R
)
Assertion
Ref Expression
ereldm  |-  ( ph  ->  ( A  e.  X  <->  B  e.  X ) )

Proof of Theorem ereldm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ereldm.2 . . . . 5  |-  ( ph  ->  [ A ] R  =  [ B ] R
)
21eleq2d 2107 . . . 4  |-  ( ph  ->  ( x  e.  [ A ] R  <->  x  e.  [ B ] R ) )
32exbidv 1706 . . 3  |-  ( ph  ->  ( E. x  x  e.  [ A ] R 
<->  E. x  x  e. 
[ B ] R
) )
4 ecdmn0m 6148 . . 3  |-  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R )
5 ecdmn0m 6148 . . 3  |-  ( B  e.  dom  R  <->  E. x  x  e.  [ B ] R )
63, 4, 53bitr4g 212 . 2  |-  ( ph  ->  ( A  e.  dom  R  <-> 
B  e.  dom  R
) )
7 ereldm.1 . . . 4  |-  ( ph  ->  R  Er  X )
8 erdm 6116 . . . 4  |-  ( R  Er  X  ->  dom  R  =  X )
97, 8syl 14 . . 3  |-  ( ph  ->  dom  R  =  X )
109eleq2d 2107 . 2  |-  ( ph  ->  ( A  e.  dom  R  <-> 
A  e.  X ) )
119eleq2d 2107 . 2  |-  ( ph  ->  ( B  e.  dom  R  <-> 
B  e.  X ) )
126, 10, 113bitr3d 207 1  |-  ( ph  ->  ( A  e.  X  <->  B  e.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   dom cdm 4345    Er wer 6103   [cec 6104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-er 6106  df-ec 6108
This theorem is referenced by:  erth  6150  brecop  6196
  Copyright terms: Public domain W3C validator