Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsb3 Unicode version

Theorem eqsb3 2141
 Description: Substitution applied to an atomic wff (class version of equsb3 1825). (Contributed by Rodolfo Medina, 28-Apr-2010.)
Assertion
Ref Expression
eqsb3
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem eqsb3
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqsb3lem 2140 . . 3
21sbbii 1648 . 2
3 nfv 1421 . . 3
43sbco2 1839 . 2
5 eqsb3lem 2140 . 2
62, 4, 53bitr3i 199 1
 Colors of variables: wff set class Syntax hints:   wb 98   wceq 1243  wsb 1645 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-cleq 2033 This theorem is referenced by:  pm13.183  2681  eqsbc3  2802
 Copyright terms: Public domain W3C validator