Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliniseg Unicode version

Theorem eliniseg 4695
 Description: Membership in an initial segment. The idiom , meaning , is used to specify an initial segment in (for example) Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
eliniseg.1
Assertion
Ref Expression
eliniseg

Proof of Theorem eliniseg
StepHypRef Expression
1 eliniseg.1 . 2
2 elimasng 4693 . . . 4
3 df-br 3765 . . . 4
42, 3syl6bbr 187 . . 3
5 brcnvg 4516 . . 3
64, 5bitrd 177 . 2
71, 6mpan2 401 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98   wcel 1393  cvv 2557  csn 3375  cop 3378   class class class wbr 3764  ccnv 4344  cima 4348 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358 This theorem is referenced by:  epini  4696  iniseg  4697  dfco2a  4821  isoini  5457
 Copyright terms: Public domain W3C validator