![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eliniseg | GIF version |
Description: Membership in an initial segment. The idiom (◡𝐴 “ {𝐵}), meaning {𝑥 ∣ 𝑥𝐴𝐵}, is used to specify an initial segment in (for example) Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
eliniseg.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
eliniseg | ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliniseg.1 | . 2 ⊢ 𝐶 ∈ V | |
2 | elimasng 4693 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ ◡𝐴)) | |
3 | df-br 3765 | . . . 4 ⊢ (𝐵◡𝐴𝐶 ↔ 〈𝐵, 𝐶〉 ∈ ◡𝐴) | |
4 | 2, 3 | syl6bbr 187 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐵◡𝐴𝐶)) |
5 | brcnvg 4516 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → (𝐵◡𝐴𝐶 ↔ 𝐶𝐴𝐵)) | |
6 | 4, 5 | bitrd 177 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
7 | 1, 6 | mpan2 401 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 ∈ wcel 1393 Vcvv 2557 {csn 3375 〈cop 3378 class class class wbr 3764 ◡ccnv 4344 “ cima 4348 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-sbc 2765 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-cnv 4353 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 |
This theorem is referenced by: epini 4696 iniseg 4697 dfco2a 4821 isoini 5457 |
Copyright terms: Public domain | W3C validator |