![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > trssord | GIF version |
Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.) |
Ref | Expression |
---|---|
trssord | ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dford3 4104 | . . . . . . 7 ⊢ (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥 ∈ 𝐵 Tr 𝑥)) | |
2 | 1 | simprbi 260 | . . . . . 6 ⊢ (Ord 𝐵 → ∀𝑥 ∈ 𝐵 Tr 𝑥) |
3 | ssralv 3004 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 Tr 𝑥 → ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
4 | 2, 3 | syl5 28 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (Ord 𝐵 → ∀𝑥 ∈ 𝐴 Tr 𝑥)) |
5 | 4 | imp 115 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → ∀𝑥 ∈ 𝐴 Tr 𝑥) |
6 | 5 | anim2i 324 | . . 3 ⊢ ((Tr 𝐴 ∧ (𝐴 ⊆ 𝐵 ∧ Ord 𝐵)) → (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) |
7 | 6 | 3impb 1100 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) |
8 | dford3 4104 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
9 | 7, 8 | sylibr 137 | 1 ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → Ord 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∧ w3a 885 ∀wral 2306 ⊆ wss 2917 Tr wtr 3854 Ord word 4099 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-ral 2311 df-in 2924 df-ss 2931 df-iord 4103 |
This theorem is referenced by: ordelord 4118 ordin 4122 ssorduni 4213 ordtriexmidlem 4245 ordtri2or2exmidlem 4251 onsucelsucexmidlem 4254 ordsuc 4287 |
Copyright terms: Public domain | W3C validator |